Reasoning, Attention and
Memory Based Machine
Learning Models

Prepared By:
Dhruv Kohli, Dept. of Mathematics

Content

* Introduction
Task

* Neural Turing Machine _ Model
* End to End Memory Networks e
* Similarity between NTM and E2EMemNN
* Game Playing Agent with RAM .

m

> Issue with state-of-the-art
Resolution with RAM

Following is the content of this presentation. First, the introduction, then we’ll discuss
4 aspects of Neural Turing Machine and End to End memory Networks, i.e. the tasks
in which they are used, elaborating on the models itself, little bit on training the
models and finally the results that we obtained. Then we’ll see the similarity b/w
NTM and E2EMemNN and finally we’ll discuss some points on building game playing
agent with RAM based machine learning models.

Introduction

* The models discussed comprises of a
memory component and a controller, such
as an artificial neural network, which

External C ‘ External

* Takes inputs from external world Input \ Output
* Stores a representation or encoding of those o @> Reasoning
inputs into the memory

* Interacts with the memory using a defined .
mechanism called attention process =

* produces outputs for the external world with
reasoning where the reasoning follows from
the graphical visualization of the interaction
between controller and memory.

The models discussed here comprises of two components, a memory and a
controller. The controller takes input from the external world, stores a representation
or encoding of those inputs into the memory, interacts with the memory using a
defined mechanism called attention process, and finally produces outputs for the
external world with reasoning where the reasoning follows from the graphical
visualization of the interaction between the controller and the memory. By
interaction we mean reading and writing operations.

Introduction

* In this thesis, | focus on applying RAM based machine learning
models in the domain of sequence to sequence learning, question
answering task and building game playing agents.

In this thesis, | focus on applying RAM based machine learning models in the domain
of sequence to sequence learning, question answering task and building game playing
agents.

Neural Turing Machine - Task

* NTM is used to learn algorithm mapping an sequence of inputs to a sequence of outputs.
* Forex: in Copy Task, where

* inputis B10110B BBBBB

» output should be BBB......B 10110
Following is the transition diagram for the copy task:

/0.2 11, 0/0. 2 111, =

n n

So, with Neural Turing Machine, the task that we are considering is the task of
sequence to sequence learning, where the aim is to find the mapping between a
sequence of inputs to a sequence of outputs. The copy task is an example of
sequence to sequence learning. For instance the input sequence in copy task can be
B10110BB... and the corresponding output sequence will be Blank till the second
Blank of the input sequence and the 10110 i.e. the main content of the input
sequence. Following is the transition diagram of copy task.

Neural Turing Machine - Model

* Unlike Turing Machine where the controller is defined (in the sense
that the controller know the transition function), in NTM, the
controlleris learnt (in the sense that the transition function is learnt).

* “Learning a function”, in statistical

termsf, |s"sa me as approximatinga _ @ R
function”, which further reducesto "« I Output
“approximating the parameters of Promees. Reasoning
the function” given that the

approach being followed for Mogiory
approximating the functionis

para metric. Architecture of NTM.

Unlike Turing Machine where the controller is defined in the sense that the controller
knows the transition function, in NTM, the controller is learnt (in the sense that the
transition function is learnt). And learning a function in statistical terms is same as
approximating a function which further reduces to “approximating the parameters of
the function” given that the approach being followed for approximating the function
is parametric.

Neural Turing Machine - Model

Biased Mt
Hidden | == ' Ll

Layer of
Neurons

» Dimension: (MxN)

Biased Memory ol N memory slots of size
Matrix M each

Now, I'll elaborate on the model.

The controller in NTM is a neural network with a hidden layer of H neurons which are
initialized with random values. The memory is a real matrix of dimension MxN where
N is the number of memory slots or vectors and M is the width of each slot. The
memory is also initialized with random values.

Neural Turing Machine - Model

Biased Read P—
Weighting
Biased Memory |
Matrix
Biased Write
Weighting

H units

N dimensional vector
with each entry >=0
and sum=1

Dimension: (MxN)
N memory slots of size
M each

N dimensional vector
with each entry >=0
and sum=1

Then the controller read and write into the memory using read and write heads
which are weighting vectors over the memory slots of dimension N where each entry
of the vector is greater than equal to zero and the sum of entries equal 1. These
weighting vectors are used to either strongly focus on single slot of the memory
(when the weighting vector has a 1 corresponding to that slot and zeros
corresponding to all other slots) or weakly focus on multiple slots when the weighting

vector is non zero for multiple slots.

Neural Turing Machine - Model

Following is the naming convention for the initial state of NTM.

Neural Turing Machine - Model

eci1 + 0(WeeCy + bec)

agy ¢ (Waelh + bac)

- WEC' WaCJ bEC' baC

—

e,: Erase vector (Mx1)
rwy a,: Add vector (Mx1)

Now, the hidden layer of neurons are used to produce an erase vector and an add
vector of dimension M using the formula shown. Here, W ., W,, b.¢, b,c are the
parameters of appropriate dimension.

10

Neural Turing Machine - Model

——_ WE(WaC bEC baC

Memory
Updation

e,: Erase vector (Mx1)
prd a;: Add vector (Mx1)

Then, these erase and add vectors combined with the write weighting vector and the
previous state of the memory matrix are used to produce new state of the memory
matrix. One can imagine that the write weighting vector first chooses the memory
slots to write in and then the erase and add vectors are used to erase some content

and add some content to these memory slots. These erase and add operations
together form a write operation.

11

Neural Turing Machine — Model
(Memory Updation)

—~

M;(7) M;_1(i)[1 — wwy(i)ey]
M;(2) M,(i) + wwy(1)ay

Here, is the mathematics behind the updation of memory. it’s quite simple and I've
already told you the intuition behind these equations.

12

Neural Turing Machine - Model

So, now, we have our updated memory M.

13

Neural Turing Machine - Model

External
Input

Read vector
formation

o
-
k-

The updated memory M1 and the read weighting vector rw1l are used to form a read
vector. And Here, X is the external output.

14

Neural Turing Machine — Model
(Read Vector Formation)

T Y rw(i)My(i)

Mathematics behind read vector formation. This just a weighted sum of memory
slots weighted by the read weighting vector.

15

Neural Turing Machine - Model

I --“\\k‘\-
Wee Weys C,

bey be,)/,,/"/

Cy relu(Wex Xi + bex + Wepre + bey) 1

1

Then, the external input and the read vector are used to compute the new state of
hidden layer of neurons (just like forward pass in Neural Network) using the formula
shown. Here. Wcx Wer, bex and ber are parameters of the model.

16

Neural Turing Machine - Model

P, = o(WpcC, + bpc)
kut ¢ Wi, cCi + bk,c
Bur relu(Wg,cCy + bg,c)
Gut 4 0(Wg,cCi + bg,c)
Sut 0(Ws,cCi + bs,c)

Yut — relu(W,,cCy + b,,c)

/

External
Output
W, bPC/"///;/' '
Wk'r W":‘";\V i R
W, W,
W,, by, bs,
bg, by, by

Outputs for updating read
and write weightings (two
sets, u={r,w})

Then, the updated hidden layer is used to produce external output, basically a

prediction, P, and two sets of outputs, one for updating read weighting vector and
other for updating write weighting vector. Again these W’s and b’s are parameters of

the model and the way the outputs are computed are shown,

17

Neural Turing Machine - Model

3

// I

_—

— ngo

G

Qutputs for updating read
and write weightings

These sets of outputs with the memory matrix and previous state of weightings are
used to produce new weightings.

18

Neural Turing Machine — Model
(Weight Updation)

Updation outputs, ke, Bt, gt, st and Yt are used.

ke = Key vector (Mx1)

Py = Key strength scalar

gt = Gate scalar for interpolation » Hyper-parameter
st = Shift weighting vector (number-of-allowed-shiftx1)

Y« = sharpening scalar

Previous
State

Fa— 1
Wi
I

|
M;
L - Jd
Controller
Outputs
Content

I ke *| Addressing |

P we| Interpolation _
ol ¢ ™| convolutional [W
9 > | shift
S¢
Tt

L —

z

Sharpening | p.w/

"

Now, what these set of outputs mean and how these outputs are used to produce
the new weighting vector are described in the thesis. And, I'll skip this part as it is

quite time consuming.

Neural Turing Machine - Model

a
T N

C, —
W, W
e,: Erase vector
rw, a,: Add vector

So, now we have got our updated read and write weighting vectors. Again the hidden
layer is used to produce the erase and add vectors.

20

Neural Turing Machine - Model

And the whole process repeats until the external input is exhausted.

21

Neural Turing Machine - Model

* Now we have a sequence of predictions and a sequence of external
outputs (target sequence).
* The error between the prediction sequence and the target

sequence is computed and propagated back.
* Then, using these errors the parameters of the model are updated

to a value that reduces the prediction error.

22

Neural Turing Machine - Training

* The model is end to end differentiable with respect to the parameters, so
backpropagation algorithm can be used to compute the derivative of loss
with respect to the parameters.

* We used RMSProp version of Gradient Descent to update the parameters.

* Previous semester code:
* CPP, gradient computation from scratch, was not getting good generalization in copy
task.

* This semester code:
* Python-Theano, Theano computes gradients, excellent generalization in copy task.

* By excellent generalization, we mean that we trained on sequences of length till 20
and got zero hamming distance on sequences of length till 116.

23

Neural Turing Machine — Results (Copy Task)

Here is the plot of the simulation of NTM on an input sequence of length 34. Before
understanding this plot, let us understand how interpret the results.

Now, let’s look at this figure. You can observe that X is a sequence of external inputs
which are binary vectors starting from a delimiter and the actual content of the
sequence ends with an ending delimiter. Y is the target sequence of external outputs
which is blank till the second delimiter of the input sequence and after second
delimiter has the actual content of the input sequence. And then we have sequence
of add vectors, read vectors, read and write weighting vectors. Now, you can see that
till the second delimiter, the add vectors has some non constant pattern and read
vectors have constant pattern while after the second delimiter the read vector has
non constant pattern while the add vector has constant pattern. Also, the sequences
of read and write weighting vectors has the same form as was expected.

24

cory

Here is the plot of the simulation of NTM on an input sequence of length 34. Before
understanding this plot, let us understand how interpret the results.

Now, let’s look at this figure. You can observe that X is a sequence of external inputs
which are binary vectors starting from a delimiter and the actual content of the
sequence ends with an ending delimiter. Y is the target sequence of external outputs
which is blank till the second delimiter of the input sequence and after second
delimiter has the actual content of the input sequence. And then we have sequence
of add vectors, read vectors, read and write weighting vectors. Now, you can see that
till the second delimiter, the add vectors has some non constant pattern and read
vectors have constant pattern while after the second delimiter the read vectors have
non constant pattern while the add vectors have constant pattern. Also, the
sequences of read and write weighting vectors have the same form as was expected.

25

Neural Turing Machine - Results

External
Input

HHH n

Read
vector

Read weighting
vector

Memory

Write weighting
vector

External
Output

Add
vector

These are some of the elements of our model.

26

Neural Turing Machine - Results

External
Output

External
Input

Add
vector

Read
vector

Read weighting vector

Write weighting vector

In the plot that | showed you before, the external input is a sequence of binary
vectors where a single vector is shown in this figure. Red = 1 and Blue = 0. Similarly,
we’ll get a sequence of external outputs, add vectors, read vectors, read weighting
vector and write weighting vector. An element of each of these sequences are shown
in this slide. Note that the black color in the weighting vector represents a value close
to 0 and white represents a value close to 1.

27

Neural Turing Machine - Results

* If the NTM has really learnt the transition function of the copy task then

* Till the second delimiter, the write operation (into memory) should be dominant and
hence plotting the add vectors should show some non constant pattern whereas
plotting the read vectors should show some constant pattern. Also the write
weighting vector should focus on consecutive slots of the memory and the focus by
read weighting vector is of no significance till second delimiter.

» After the second delimiter, the read operation (from memory) becomes dominant
and hence plotting the read vectors should show some non constant pattern
whereas plotting the add vectors should show some constant pattern. Also the read
weighting vector should focus on consecutive slots of the memory in the same order
as the write weighting vector before second delimiter and the focus by write
weighting vector is of no significance after second delimiter.

28

Neural Turing Machine — Results (Copy Task)

0 Learning Curve for COPY

w
el

w
o

N
e}

Hamming Distance
— [N]
w o

-
o

M‘MJ

|
0
0 50000 100000 150000 200000 250000 300000 350000
Iteration no.

5

This is the learning curve. X axis denotes the iteration number where each iteration
comprises of a forward pass to compute prediction and a backward pass to compute
gradients and updation of parameters. The Y axis denotes the Hamming distance
between the prediction and the target. After 150000 iterations the hamming distance
becomes zero.

29

End to End Memory Networks - Task

* Input:
* Comprehension:
1 Mary got the milk there.
2 John moved to the bedroom.
3 Sandra went back to the kitchen.
4 Mary travelled to the hallway.
* Query:
5 Where is the milk?
* OQutput:
* Answer: hallway
* Sentences used in computing answer: 1, 4

The task that we consider for end to end memory networks is the task of question
answering where the input comprises of a comprehension and a query and the

output is a single one word answer to the query and the sentences used in computing
the answer.

30

End to End Memory Networks - Model

* Suppose sy, S,, ..., S, be the sentences in our comprehension, q be the
guery sentence and y be the answer to the query.

* Step 1: Convert s; (a word) to x; where x; = BOW(s;)
* BOW means “Bag Of Words”.
* Let V = size of vocabulary.

Suppose s,, s,, ..., S, be the sentences in our comprehension, q be the query sentence
and y be the answer to the query.
Step 1 is to Convert s; (a word) to x; where x; = BOW(s;)

31

End to End Memory Networks - Model

* Step 2: Compute memory vectors m;
from x; using an embedding, A (dxV).
m; = EJ- lj - A‘Ji‘ij

where
Ij = (1 —3/J) = (k/d)(1—25/J)

where J = total number of words in sentence
si and d is the dimension of the embedding A. @

Note: This was something new that | never saw before, The above Figure 1: [5](a) Single layer of End to End Memory Networks (b) S-layered End to End Memory Networks
representation contains the information regarding context as well as
order of words (Positional Encoding).

Step 2 is to Compute memory vectors m; from x; using an embedding, A where [; is
defined in the following manner. The basic intuition behind the formation of the
memory vectors is to capture the contextual and the word ordering information from
the sentence.

32

End to End Memory Networks - Model

* Step 3: In the same manner, output
vectors ¢; are computed from x; using
an embedding, C and internal
representation, u, of query q using
an embedding B.

» Both C and B are of dimension dxV.

33

End to End Memory Networks - Model

* Step 4: Then a weighting, p, over the
memory vectors is computed by
computing the similarity between the
memory vectors and the internal
representation of query by softmax.

pi = Softmax(u’m;).

. one can easily Observe that' the h|gher Figure 1: [5](a) Single layer of End to End Memery Networks (b) 3-layered End to End Memory Notworks

the value of p; more relevant is the
memory vector m;in answering the
query.

34

End to End Memory Networks - Model

* Step 5: An intermediate response, o,
is generated by weighted sum of the
output vectors ¢; with p; as weight
correspondingto c;

0= Zp,r-,,
i

35

End to End Memory Networks - Model

* Step 6: This intermediate response is
0, is summed with the internal
representation of query u.

36

End to End Memory Networks - Model

* Step 7: The summed vector is
transformed using a decoding matrix
W of dimension Vxd and softmax-ed
to a V dimensional final response a.

a = Softmax(W (o + u))

37

End to End Memory Networks - Model

* Loss: Binary cross-entropy error
between a and BOW(y) where y is the
target one-word answer.

38

End to End Memory Networks - Model

(@)

Figure 1: [5](a) Single layer of End to End Memory Networks (b) 3-layered End to End Memory Networks

On Left hand side, you can see a single layer of memory networks. These layers can
be stacked to form a multi layer memory network. One can note this model is end to
end differentiable with respect to the parameters of the model.

The above procedure explains a single layer of memory networks. This is incapable of
answering questions which require transitive implications. For ex:

Mice are afraid of wolves.

Jerry is a mouse.

What is Jerry afraid of? wolf
To overcome this, concept of Multiple Hops is proposed.
The intermediate response generated, o, and the internal representation of query, u
are summed and the summed vector acts as the new internal representation of the
query.
THIS SUMMATION is important so that the model doesn't forget the context of the
query itself.
Now, with this new internal representation of the query, step 2 to 7 are repeated and
for the final hop (layer) step 8 is performed.

39

End to End Memory Networks - Model

* Observe that the parameter space is
too high, B, W, A;, C, i=1..number-of-
hops/layers.

* To tackle this, two types of parameter —=||[[/|| =
tying is used: =
* RNN like: A1= A2= e = An= A and C]_ = Cz
=..=GC,
* Adjacent: Ciu1 = Ay, B=Ajand Wi=Cy oo
(We used this in our model)

40

End to End Memory Networks - Training

* Since the model is end to end differentiable with respect to the
parameters, one can easily use backpropagation algorithm for

computing the derivative of loss with respect to the parameters.

* Stochastic Gradient Descent is used to update the parameters.

41

End to End Memory Networks - Results

* We used Babi Project Dataset from FB-Al research.
* To test whether, the network is able to reproduce the results in toy

tasks, we tested with 20 toy tasks

* With Single supporting fact toy task we got following results:

C1
c2
c3

ca
cs
c6

C1

148

= 0O O =»| o

eala|a
olo]o
168 0 | 2 |
0 180 1
| o | o [153]
olo]o
oo o

Confusion Matrix

c5

0

0

7 !

0

156

0

Cé

o|lOoO|»|O|O

180

Precision, recall and f1-score calculated
using this matrix are consistent with the
results shown by FB-Al.

Single Supporting Fact
Comprehension:
1 John travelled to the hallway.
2 Mary journeyed to the bathroom.
Query:
3 Where is John?
Answer:
hallway
Sentence used in inference: 1

One can observe from the confusion matrix that the model predicts the correct class
with very high frequency, or probability.

42

Similarity between Neural Turing Machine
and End to End Memory Network

* The content addressing module of NTM is similar to the similarity
finding between memory vectors and internal representation of
query.

* The location based addressing module of NTM seems to be
implementing the multiple hops concept of end to end memory
networks.

Sorry, | haven’t explained the content addressing module and the location based
addressing module of NTM.

43

Game Playing Agent with RAM — Aim

* To build a model
* that can learn to play any game from the sensory input only
* in an optimal manner (better than humans)
* Using
» Reinforcement Learning
* Markov Decision Process
* Q-Learning
* Deep Learning
* Convolution Neural Networks

44

Game Playing Agent with RAM —
Problem with state-of-the-art

* Problem with current state of the art?

* Consider the game Breakout and the following sequence of frames
observed by an agent.

45

Game Playing Agent with RAM —
Problem with state-of-the-art

» State-of-the-art agent (based on deep learning) moves to the left.
* But why?

* A human agent might answer that since the ball is moving towards
left the action taken is to move left.

* This is the part that the state-of-the-art agent doesn’t answer. It has
just learnt some set of parameters that once fitted in the neural
network predicts optimal action to take.

* But hopefully the RAM-based agent will be able to reason that "since
the ball is moving towards left, | should also move towards left to
prevent death”.

46

Game Playing Agent with RAM —
Resolution with RAM (ldeas)

* Weighting over memory slots as well as over the information (bits) in
a slot itself.

* Hope is that: the ball and the slider in the frame will be focused by modified
NTM.

* That'll provide reasoning to some extent that the decision (choice of action)
by modified NTM is taken based on the position of ball and the slider.
* Increasing the number of allowed shifts in NTM to be equal to the
number of memory slots so that the focus can shift from one memory
slot to arbitrarily any slot.

47

