
REASONING, ATTENTION AND

MEMORY BASED MACHINE LEARNING

MODELS

A Project Report Submitted

in Partial Fulfilment of the Requirements

for the Degree of

BACHELOR OF TECHNOLOGY

in

Mathematics and Computing

by

Dhruv Kohli

(Roll No. 120123054)

to the

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

GUWAHATI - 781039, INDIA

April 2016

CERTIFICATE

This is to certify that the work contained in this project report entitled “Rea-

soning, Attention and Memory Based Machine Learning Models”

submitted by Dhruv Kohli (Roll No.: 120123054) to Indian Institute of

Technology Guwahati towards partial requirement of Bachelor of Technol-

ogy in Mathematics and Computing has been carried out by him/her under

my supervision and that it has not been submitted elsewhere for the award

of any degree.

Guwahati - 781 039 (Dr. Amit Sethi)

April 2016 Project Supervisor

ii

ABSTRACT

The main aim of the project is to explore and analyse the Reasoning,

Attention and Memory (RAM) based models in machine learning with ap-

plications in the domain of sequence to sequence learning and question an-

swering. We also present some ideas for a model based on RAM for learning

the optimal policy of taking actions in a game.

iii

Contents

List of Figures vii

1 Introduction 1

1.1 Structure of the Thesis . 3

2 Supervised Sequence to Sequence Learning 5

2.1 Supervised Learning . 5

2.2 Sequence to Sequence Learning 6

3 Artificial Neural Networks 11

3.1 Perceptron . 11

3.2 Feedforward Neural Network 12

3.2.1 Forward Propagation 13

3.2.2 Activation Functions 14

3.2.3 Loss Functions . 14

3.2.4 Backward Propagation 15

3.3 Parameter Update Rules . 17

3.4 Parameter Initialisation . 19

3.5 Training a Feedforward Neural Network 20

3.6 Recurrent Neural Network . 20

3.6.1 Unfolding . 21

iv

3.6.2 Vanishing or Exploding Gradient 21

4 Neural Turing Machine 23

4.1 Architecture . 23

4.2 Attention Mechanism . 24

4.2.1 Reading from Memory 25

4.2.2 Writing into Memory 25

4.2.3 Addressing Mechanism 27

4.3 Controller . 32

4.4 Training Neural Turing Machine 32

4.5 Experiments . 35

4.5.1 Copy Task . 36

5 End to End Memory Networks for QA Task 41

5.1 Single Layered End to End Memory Networks 42

5.2 Multi-Layered End to End Memory Networks 44

5.3 Training End to End Memory Networks 45

5.4 Experiments . 45

5.4.1 Question Answering based on Babi-Project Dataset . . 46

6 Generic Game Playing Agent using Deep Reinforcement Learn-

ing with RAM 52

6.1 Markov Decision Process . 54

6.2 Policy Value . 55

6.3 State-Action Value Function and Q-Learning 56

6.4 Deep Reinforcement Learning 57

6.4.1 Model . 58

6.4.2 Training Details . 59

6.4.3 Results . 60

v

6.5 Deep Reinforcement Learning with RAM 62

6.6 Model Ideas . 63

Bibliography 65

vi

List of Figures

1.1 General architecture of a RAM based model. 2

2.1 Translation of text from English to French. 7

2.2 Graphical illustration of the neural machine transla-

tion model using bidirectional RNN [1]. 9

2.3 A sentence with POS-tags corresponding to each word

of the sentence taken from NLTK. 10

3.1 A feedforward neural network. The S-shaped curves in

the hidden and output layers indicate the application of ‘sig-

moidal’ nonlinear activation functions. 13

3.2 RNN with unfolded version. [3] 21

3.3 Illustration of vanishing gradient in recurrent neural

networks. [8] The shading of the nodes in the unfolded net-

work indicates their sensitivity to the inputs at time one (the

darker the shade, the greater the sensitivity). The sensitivity

decays over time as new inputs overwrite the activations of

the hidden layer, and the network forgets the first inputs. . . . 22

4.1 Neural Turing Machine architecture.[9] 24

vii

4.2 Flow diagram of addressing mechanism.[9] The key vec-

tor, kt and key strength, βt are used to perform content-based

addressing of the memory matrix, Mt. The resulting content-

based weighting is interpolated with the weighting from the

previous time step based on the value of the interpolation

gate, gt. The shift weighting, st determines whether and by

how much the weighting is rotated. Finally, depending on γt,

the weighting is sharpened and used for memory access. 28

4.3 Neural Turing Machine learning network. 35

4.4 Input and output sequence in copy task. 36

4.5 Learning curve in copy task with our first version of

NTM. 37

4.6 Learning curve in copy task with our second version

of NTM. 37

4.7 Graphical visualization of copy task with first version

of NTM. External Input Sequence (X), Target Sequence (Y),

Prediction Sequence (Prediction), Thresholded Prediction Se-

quence (Thresholded Prediction), Error (Abs(Prediction-Y)),

Read vectors (Reads), Add vectors (Adds) and Weightings be-

fore and after ending delimiter 38

4.8 Graphical visualization of copy task with second ver-

sion of NTM. External Input Sequence (X), Target Sequence

(Y), Prediction Sequence (Prediction), Thresholded Predic-

tion Sequence (Thresholded Prediction), Error (Abs(Prediction-

Y)), Read vectors (Reads), Add vectors (Adds), Read Weight-

ing vectors (Read Weights) and Write Weighting vectors (Write

Weights) . 39

viii

5.1 End to End Memory Networks Architecture.[20] (a) A

single layer version. (b) A three layer version. 44

6.1 Representation of general scenario of reinforcement

learning. 53

6.2 Illustration of states and transitions of MDP at differ-

ent times. 55

6.3 Q-Learning algorithm [19] 57

6.4 Convolution neural network as the mind of the agent. 59

6.5 Epoch number versus the total reward and mean Q-

value received by the agent in the game Breakout dur-

ing testing . 61

6.6 Learning curve for the game Breakout 62

6.7 A sequence of frames while the agent has learnt to

play the game . 63

ix

Chapter 1

Introduction

Its a fact that every human being has the capability of memorizing facts

as well as solving problems. Therefore, any model that tries to mimic the

behavior of human brain must constitute a memory component and a prob-

lem solving component. The machine learning community represents the

problem solving component with an artificial neural network and so far, has

been successful in solving problems such as speech recognition, object clas-

sification, image annotation etc. But most of the existing machine learning

models lack any interaction with the (potentially very large) long term mem-

ory component. That’s where the reasoning, attention and memory based

machine learning models come into picture.

The models discussed in this thesis comprises of a memory component

and a controller, such as an artificial neural network, which takes inputs

from external world, stores a representation or encoding of those inputs into

the memory, interacts with the memory using a defined mechanism called

attention process and produce outputs for the external world with rea-

soning where the reasoning follows from the graphical visualization of the

interaction between controller and memory. Hence, our memory comprises

1

Figure 1.1: General architecture of a RAM based model.

of a set of entities where each entity is a representation or encoding of an

external input seen by the controller, the attention process is the process or

mechanism through which the controller interacts with the memory and the

reasoning behind production of an external output follows from the graph-

ical visualization of the interaction between controller and memory. Fig. 1.1

shows a general architecture of a RAM based model.

Following example demonstrates why RAM based machine learning mod-

els are superior to the existing machine learning models in terms of similarity

with the way human beings think. Consider the comprehension:

1. John went to the kitchen.

2. John picked up the knife.

3. John dropped the knife on the floor.

4. Marry came into the kitchen.

5. Marry picked up the knife from the floor.

6. John went to the bathroom.

7. Marry went to dining room.

Now, try to answer the following query based on the above comprehen-

sion: Where is the knife? Your answer must have been “dining room”.

2

Such question answering tasks have been successfully solved using re-

current neural networks. Recurrent neural networks (RNNs) are a class of

artificial neural network architecture that-inspired by the cyclical connectiv-

ity of neurons in the brain-uses iterative function loops to store information.

Though one might get high accuracy in terms of the correctness of the answer

to the query using RNN, but RNN fails to provide an explicit explanation

behind the production of a particular answer. On the contrary, RAM based

model stores a representation of each sentence of the comprehension as an

entity in the memory, searches for the entities in the memory relevant for

answering the query and finally computes the answer to the query based on

the searched relevant entities.

In this thesis, we focus on applying RAM based models in the domain of

sequence to sequence learning where the aim is to find a mapping between

a sequence of inputs to a sequence of outputs, in the domain of question

answering where the aim is to build a model that can answer any query

based on a given comprehension and in the domain of building game playing

agents where the aim is to find an optimal policy which is a mapping from

the state of the agent to a legal action so that, on following the optimal

policy, the overall reward or score of the agent gets maximized.

1.1 Structure of the Thesis

Chapter 2 briefly reviews supervised sequence to sequence learning. Chapter

3 provides background material on artificial neural networks and recurrent

neural networks. Chapter 4 and 5 investigates Neural Turing Machine with

application in sequence to sequence learning and End to End Memory Net-

works with application in question answering tasks, respectively. Chapter 6

3

reviews reinforcement learning and building game playing agents using deep

reinforcement learning and presents ideas for a RAM based model for learn-

ing the optimal policy for a game playing agent and shows its superiority to

existing state of the art in terms of the similarity of the model with the way

human beings perceive, reason and act.

4

Chapter 2

Supervised Sequence to

Sequence Learning

This chapter provides background material and literature review of super-

vised sequence to sequence learning. Section 2.1 introduces supervised learn-

ing in general and section 2.2 introduces the problem of sequence to sequence

learning in a supervised setting with examples from problems like Machine

Translation and POS-Tagging.

2.1 Supervised Learning

Here, the goal is to learn a mapping from inputs x to outputs y, given a

labeled set of input-output pairs D = {(xi, yi)}Ni=1. Here D is called the

training set, and N is the number of training examples. In the simplest

setting, each training input xi is a D-dimensional vector of numbers, repre-

senting, say, the height and weight of a person. These are called features,

attributes or covariates. In general, however, xi could be a complex struc-

tured object, such as an image, a sentence, an email message, a time series,

5

a molecular shape, a graph, etc.

Similarly the form of the output or response variable can in principle

be anything, but most methods assume that yi is a categorical or nominal

variable from some finite set, yi ∈ {1, . . . , C} (such as male or female), or

that yi is a real-valued scalar (such as income level). When yi is categorical,

the problem is known as classification or pattern recognition, and when

yi is real-valued, the problem is known as regression. Another variant,

known as ordinal regression, occurs where label space Y has some natural

ordering, such as grades A-F.

2.2 Sequence to Sequence Learning

Here, the goal is to learn a mapping from sequence of inputs {x1, x2, . . . , xTx}

to a sequence of outputs
{
y1, y2, . . . , yTy

}
, given a labeled set of input-output

sequence pairs D =
{({

xi1, x
i
2, . . . , x

i
Txi

}
,
{
yi1, y

i
2, . . . , y

i
Tyi

})}N
i=1

. Here D is

called the training set, and N is the number of training examples. Described

below are some of the problems involving sequence to sequence learning.

Machine Translation

Consider a sentence i.e. sequence of words x = {x1, x2, . . . xTx} in some lan-

guage L1 and the corresponding translation of x i.e. y =
{
y1, y2, . . . yTy

}
, in

some other language L2. In machine translation from L1 to L2, the aim is to

find y from x as shown in Fig. 2.1. Traditional statistical techniques for ma-

chine translation models the probability distribution P (y|x) and for a given

x, searches for y∗ that maximizes the conditional probability distribution i.e.

y∗ = argmaxyP (y|x) (2.1)

6

Figure 2.1: Translation of text from English to French.

In neural machine translation, we fit a parameterized model to maximize

the conditional probability of sentence pairs using a parallel training corpus.

Once the conditional distribution is learned by a translation model, given a

source sentence a corresponding translation can be generated by searching

for the sentence that maximizes the conditional probability. This neural

machine translation approach consist of two components, the first encodes

the variable length input sentence x to a fixed length vector and the second

decodes the fixed length vector to the target sentence y. In [4], RNN is used

as an encoder and a separate RNN is used as a decoder. In this Encoder-

Decoder framework, the encoder reads the input sentence, a sequence of

vectors {x1, x2, . . . xTx} where xi ∈ Rn, uses RNN to compute the hidden

states {h1, h2, . . . hTx} and finally computes a fixed length vector c from these

hidden states as follows:

ht = f (xt, ht−1) (2.2)

c = q ({h1, h2, . . . hTx}) (2.3)

The decoder is trained to predict the next word yt′ given the context

vector c and all the previously predicted words {yt, . . . yt′−1}. In other words,

the decoder defines a probability over the translation y by decomposing the

joint probability into the ordinal conditionals i.e.

7

P (y) =

i=Ty∏
i=1

P (yt| {y1, . . . yt−1} , c) (2.4)

A separate RNN is used to model the ordinal distribution where st rep-

resents the hidden states,

P (yt| {y1, . . . yt−1} , c) = g (yt−1, st, c) (2.5)

In [1], a bidirectional RNN is used to encode the input sequence. Consider

an input sequence {x1, x2, . . . xTx}, the forward hidden states
{
hf1 , . . . h

f
Tx

}
obtained using an RNN which reads the input sequence in order from x1

to xTx and the backward hidden states
{
hb1, . . . h

b
Tx

}
obtained using an RNN

which reads input sequence in order from xTx to x1, then the net hidden states

are given by ht =
[
hft , h

b
t

]
. This way ht contains the contextual information

of both the preceding words and the following words with strong focus on

xt. Then, as in the decoder of [4], the decoder, here, defines each conditional

probability as:

P (yt| {y1, . . . yt−1} , c) = g (yt−1, st, ct) (2.6)

where st is the hidden state of a RNN. Unlike [4], here the context vector

ct is distinct for each target word yt and is defined as the weighted sum of

the hidden states produced by the encoder i.e.

ct =
Tx∑
j=1

αtjhj (2.7)

where αtj is defined as

αtj =
exp (etj)∑Tx
k=1 exp (etk)

(2.8)

8

where

etj = a (st−1, hj) (2.9)

where a is a feed forward neural network jointly learnt with all other

components. A graphical illustration of the model is shown in Fig. 2.2.

Figure 2.2: Graphical illustration of the neural machine translation
model using bidirectional RNN [1].

The performance achieved by the above model is comparable to the ex-

isting state-of-the-art. In [17], an attention based model is used for machine

translation using the concepts of Neural Turing Machine [9], and the results

achieved are comparable to those in [1].

POS-Tagging

Here, given a text document comprising of sentences {s1, s2, . . . sn} where

9

each sentence comprises of a sequence of words {si1, . . . sini
}, the aim is to

predict the correct Part-Of-Speech Tag corresponding to each word in each

sentence as shown in Fig. 2.3. In [22], a bidirectional LSTM-RNN in roughly

the same manner as described in [1] is used for solving the sequence to se-

quence learning problem of POS-Tagging.

Figure 2.3: A sentence with POS-tags corresponding to each word
of the sentence taken from NLTK.

10

Chapter 3

Artificial Neural Networks

In this chapter, we review the theory of artificial neural networks, specifically,

feedforward neural networks (FNNs). In section 3.1, we discuss the biological

relationship of ANNs with neurons in a brain. In section 3.2, we elaborate

on the theory of feedforward neural networks with forward propagation, ac-

tivation functions, loss functions and backward propagation. In section 3.3,

we state the commonly used gradient descent algorithms. In section 3.4, we

state the commonly used techniques to initialize parameters of an ANN and

in section 3.5, we state the procedure for training FNNs. Finally, in section

3.6, we give a brief overview of recurrent neural networks.

3.1 Perceptron

An artificial perceptron is an artificial version of biological neuron which

takes a number of external inputs through the incoming connections, per-

form a weighted sum of the inputs where weights represents the strength

of the connections (synapses) between neurons or between neurons and pre-

ceptors and finally applies an activation function such as sigmoid activation

11

function over the weighted sum producing an output based on which the

perceptron is classified as activated or non-activated. In recent models, the

binary state of an artificial perceptron is extended to a real valued state. In

general, a perceptron can be represented with a function f which takes inputs

{x1, x2, . . . xn} through connections with weights (strengths) {w1, w2, . . . wn}

and a bias b and produces output f (b+
∑n

i=1wixi) which represents the

state of the perceptron.

3.2 Feedforward Neural Network

A feedforward network is represented by multiple layer of neurons (hidden

layers) with an input and an output layer with connections feeding forward

from one layer to the next as shown in Fig. 3.1. Input pattern is presented

to the input layer, propagated through the hidden layers to the output layer.

The output of a FNN depends on the current input only and does not depend

on past inputs or future inputs. Therefore the FNN are not suitable for the

task of sequence to sequence learning or question answering or building game

playing agent.

A FNN with a particular set of weights defines a function from input to

output. By altering the weights, a single FNN is capable of instantiating

many different functions. It has been proven in [14] that an FNN with a

single hidden layer containing a sufficient number of nonlinear units can ap-

proximate any continuous function on a compact input domain to arbitrary

precision. For this reason FNNs are said to be universal function approxi-

mators.

12

Figure 3.1: A feedforward neural network. The S-shaped curves in the
hidden and output layers indicate the application of ‘sigmoidal’ nonlinear
activation functions.

3.2.1 Forward Propagation

Consider an input vector to FNN x = {x1, . . . xn}. For hidden unit h in the

first hidden layer of neurons with connections w1
ih with xi where i goes from

1 to n and bias b1h, the activation a1h is computed as

s1h = b1h +
n∑
i=1

w1
ihxi (3.1)

a1h = θh
(
s1h
)

(3.2)

where θh is an appropriately chosen activation function depending on the

problem statement. Similarly, for hidden unit h in the hidden layer Hl with

connections wlh′h with h′ unit of previous layerHl−1 and bias blh, the activation

alh is computed as

slh = blh +
∑

h′∈Hl−1

wlh′ha
l−1
h′ (3.3)

alh = θh
(
slh
)

(3.4)

13

The process is repeated until the output activations are generated.

3.2.2 Activation Functions

Following are some of the most commonly used activation functions:

Sigmoid

θh (x) = σ (x) =
1

1 + exp (−x)
(3.5)

Tanh

θh (x) = tanh (x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(3.6)

Rectifier Linear Unit (RELU)

θh (x) = relu (x) = max (x, 0) (3.7)

Leaky-RELU

θh (x) = lrelu (x, α) = I (x ≥ 0)x+ I (x < 0)αx (3.8)

Linear

θh (x) = x (3.9)

Sine

θh (x) = sin (x) (3.10)

3.2.3 Loss Functions

Suppose y is the target and p is the output produced by the neural network

with parameters Θ then following are the commonly used functions to com-

pute the loss or cost with respect to the parameters of the model.

14

Euclidean squared error (L2 loss)

lL2(y, p(Θ)) = ‖y − p(Θ)‖22 (3.11)

Laplacian Loss (L1 loss)

lL1(y, p(Θ)) = ‖y − p(Θ)‖1 (3.12)

Binary Cross-Entropy Loss (Classification task)

lbinary crossentropy(y, p(Θ)) = −
∑
i

yi log(p(Θ)i) (3.13)

where y is a one-hot encoded vector with yi = 1 if the ith example has class

Ci.

In probabilistic setting, L2 loss corresponds to the negative log likelihood of a

normal distribution with mean p(Θ), L1 loss corresponds to the negative log

likelihood of a laplacian distribution with mean p(Θ) and binary crossentropy

loss corresponds to negative log likelihood of a multinomial distribution with

class probabilities given by vector p(Θ).

3.2.4 Backward Propagation

Once an appropriate loss function is chosen, the main goal is to minimize the

loss with respect to the parameters. Basically, the derivative of the loss with

respect to each parameter of the model is computed and the parameters are

then updated using one of the gradient descent algorithms. The computa-

tion of the gradient of loss with respect to each parameter is performed using

backpropagation algorithm which makes use of chain rule of partial deriva-

tives. As an example, consider the L2 loss lL2 and the output of the final

15

layer Hl be p(= alh) which is computed using equations 3.3 and 3.4. Now, to

compute derivative of loss with respect to wkh′h which connects ak−1h′ with skh,

chain rule of partial derivatives is used.

We start by computing the partial derivative of loss lL2 with respect to

activations in the final layer alh.

∆l
h =

∂lL2
∂alh

= 2(alh − yh) (3.14)

Then, the by making use of the chain rule of partial derivatives, derivative

of loss with respect to pre-activations slh is computed.

δlh =
∂lL2
∂slh

=
∂lL2
∂alh

∂alh
∂slh

= ∆l
hθ
′(slh) (3.15)

The derivative of loss with respect to the parameters wlh′h and blh are

computed as,

∂lL2
∂wlh′h

=
∂lL2
∂slh

∂slh
∂wlh′h

= δlha
l−1
h′ (3.16)

∂lL2
∂blh

=
∂lL2
∂slh

∂slh
∂blh

=
∂lL2
∂slh

= δlh (3.17)

The derivative of loss with respect to the activations al−1h are computed

as,

∆l−1
h =

∂lL2

∂al−1h

=
∑
h′∈Hl

∂lL2
∂slh′

∂slh′

∂al−1h

=
∑
h′∈Hl

δlh′w
l
hh′ (3.18)

Then, the derivative of loss with respect to the pre-activations sl−1h are

computed as,

16

δl−1h =
∂lL2

∂sl−1h

=
∂lL2

∂al−1h

∂al−1h

∂sl−1h

= ∆l−1
h θ′(sl−1h) = θ′(sl−1h)

∑
h′∈Hl

δlh′w
l
hh′ (3.19)

To compute the gradient of loss with respect to the parameters wkh′h and

bkh where k goes from l − 1 to 1, the recursion developed in equation 3.19

with equations 3.18, 3.15, 3.16 and 3.17 are used.

3.3 Parameter Update Rules

Once the derivative of loss with respect to the parameters has been calcu-

lated, the next step is to update the parameters such that the loss with the

new set of parameters is lesser. This is done by making a step on the surface

of the loss function which is a function of the parameters from the current

point to a point which has a lower associated loss. This is efficiently done

using gradient descent algorithms. This process of gradient computation

and gradient descent is repeated until the parameters converge to a point on

the surface where the loss is minimum. Here, we describe some of the most

commonly used gradient descent algorithms.

Stochastic Gradient Descent

Θt+1 = Θt − α∇L(Θt) (3.20)

Here, Θt+1 is the new set of parameters obtained by subtracting α times the

gradient of loss with respect to the parameters at old state ∇(Θt) from the

old set of parameters Θt. Here, α is the learning rate which has to be tuned.

A large value of α leads to divergence of the parameters from the minima

while a very small value of α leads to slow convergence. Hence, SGD is highly

17

sensitive to the learning rate α. [2]

Momentum update

Vt+1 = µVt − α∇L(Θt) (3.21)

Θt+1 = Θt + Vt (3.22)

Here, Vt and µ can be interpreted as velocity at time t and friction coefficient

that damps the velocity. This makes SGD more less sensitive to the learning

rate α as it prevents oscillation of the update Vt+1 in the steep direction and

builds up the update Vt+1 in shallow direction, hence taking significant steps.

[2]

Adaptive Gradient Descent

Θt+1i = Θti − α
(∇L(Θt))i√∑t
t′=1(∇L(Θ′t))

2
i

(3.23)

Here, Θt+1i is the ith component of the new set of parameters obtained. The

step for ith component is divided by the square root of the sum of the square

of the ith component of the gradient of loss with respect to the old set of

parameters Θt. This helps to adapt the step for steep and shallow directions.

But, this results in slow convergence of parameters due to gradual decrease

of step size to zero. [5]

RMSprop

Ut+1i = ηUt − (1− η)(∇L(Θt))
2
i (3.24)

18

Θt+1i = Θti − α
(∇L(Θt))i√

Ut+1i

(3.25)

Here, U0i = 0 ∀ i and η is the decay rate which decays the accumulated sum

of squares of gradients so that the step size does not gradually decrease to

zero but increase too. This speeds up the convergence of parameters [21]

Adaptive Moment (Adam)

Mt+1i = χMt − (1− χ)(∇L(Θt))i (3.26)

Vt+1i = ηVt − (1− η)(∇L(Θt))
2
i (3.27)

Θt+1i = Θti − α
Mt+1i√
Ut+1i

(3.28)

Here, Mt represents momentum, Vt represents velocity, M0i = 0 and V0i = 0,

∀ i, χ is the decay rate for momentum and η is the decay rate for velocity.

This method is generalization of adaptive gradient descent. [15]

3.4 Parameter Initialisation

The first step of training a neural network is to randomly initialize the pa-

rameters which comprises of weights of the connections and bias terms. Usu-

ally, the weights are initialized with standard normal distribution and bias

terms are initialized to a constant 0 or 0.1. But in convolutuional neu-

ral networks [16], some parameter initialization techniques like HeUniform,

19

HeNormal [11], GlorotUniform and GlorotNormal [7] are proven to be better

in terms of speed of convergence to optimal parameters.

3.5 Training a Feedforward Neural Network

Given data D = {(xi, yi)}Ni=1 where xi represents the input and yi denotes

the targets, training a feedforward with paramters Θ, which constitutes all

the weights connecting neurons and bias terms, comprises of the following

steps:

1. Randomly initialize the parameters (refer 3.4)

2. Compute the outputs pi for each input xi using forward pass (refer

3.2.1)

3. Compute the loss or error in outputs from targets using an appropriate

loss function (refer 3.2.3)

4. Compute the derivative of loss with respect to each parameter (refer

3.2.4)

5. Perform a gradient descent step using an appropriate gradient descent

algorithm (refer 3.3)

6. Repeat from second step until the parameters converge or loss becomes

less than some threshold.

3.6 Recurrent Neural Network

Recurrent neural networks, as the name implies, contains feedback connec-

tions from neurons in a layer to neurons in the same or previous layers. RNN

20

maps an entire history of past inputs to an output. Indeed, the equivalent

result to the universal approximation theory for FNNs is that an RNN with a

sufficient number of hidden units can approximate any measurable sequence

to sequence mapping to arbitrary accuracy [10]. The key point is that

the recurrent connections allow a ‘memory’ of previous inputs to

persist in the networks internal state, and thereby influence the

network output.

3.6.1 Unfolding

RNN can be viewed as FNN when unfolded. Fig. 3.2 shows a RNN and the

corresponding unfolded version. Once unfolded, the training procedure for

FNN can be applied to RNN too.

Figure 3.2: RNN with unfolded version. [3]

3.6.2 Vanishing or Exploding Gradient

Unfortunately, for standard RNN architectures, the range of context that

can be in practice accessed is quite limited. The problem is that the in-

fluence of a given input on the hidden layer, and therefore on the network

21

output, either decays or blows up exponentially as it cycles around the net-

works recurrent connections. This effect is often referred to in the literature

as the vanishing gradient problem [12]. The vanishing gradient problem is

illustrated schematically in Fig. 3.3. To overcome this problem, Long-Short

Term Memory Architecture was introduced. LSTM in itself is an exhaustive

model which we do not intend to cover in this thesis. One can refer to [13]

to get a detailed view of LSTM, from the design of the model to its training.

Figure 3.3: Illustration of vanishing gradient in recurrent neural
networks. [8] The shading of the nodes in the unfolded network indicates
their sensitivity to the inputs at time one (the darker the shade, the greater
the sensitivity). The sensitivity decays over time as new inputs overwrite the
activations of the hidden layer, and the network forgets the first inputs.

22

Chapter 4

Neural Turing Machine

The combination of neural networks, specifically recurrent neural networks,

with a large addressable memory, which they can interact with by attentional

processes, is called a Neural Turing Machine due to its analogy to Turing

Machine with infinite memory tape. Unlike Turing Machine, an NTM is

a differentiable computer that can be trained by gradient descent, yielding

a practical mechanism for learning programs. In [9], preliminary results

show that an NTM can infer simple algorithms such as copying, sorting and

associative recall.

4.1 Architecture

A Neural Turing Machine architecture contains two basic components: a

neural network controller and a memory bank. Fig. 4.1 presents a basic

diagram of the NTM architecture. The controller not only interacts with an

external world via input and output vectors but also interacts with a memory

matrix using selective read and write operations. By analogy to the Turing

machine, network outputs that parametrise these operations are referred as

23

“heads”.

Note that Turing Machine has a defined controller in terms of

the task that the machine has to perform. On the other hand, the

controller in Neural Turing Machine is learnt based on the input

output pairs corresponding to a particular task.

Figure 4.1: Neural Turing Machine architecture.[9]

Breifly, the controller in NTM is a neural network (feedforward, recurrent

or LSTM), the memory is a matrix consisting of N memory slots each of an

appropriate size M , the read and write heads are vectors of length N used

by the controller to strongly focus on one memory slot or weakly focus on

multiple memory slots.

4.2 Attention Mechanism

The process or mechanism with which the controller interacts with the mem-

ory is called attention mechanism. In NTM, the attention mechanism conm-

prises of procedures to read from memory, write into memory and updation

of read and write heads.

24

4.2.1 Reading from Memory

Let Mt be the contents of the N xM memory matrix at time t, where N is

the number of memory locations and M is the vector size at each location.

Let wt be a vector of weightings over the N locations emitted by a read head

at time t. Since all the weightings are normalised, the N elements wt(i) of

wt are given by:

∑
i

wt(i) = 1 (4.1)

The length M read vector rt returned by the head is defined as a convex

combination of the row-vectors Mt(i) in memory:

rt ←
∑
i

wt(i)Mt(i) (4.2)

rt is differentiable with respect to both the memory and the weighting. The

derivative of rt with respect to wt is:

∂rt(i)

∂wt(j)
= Mt(i, j) (4.3)

and with respect to Mt is:

∂rt(k)

∂Mt(i, j)
= wt(i)I(k = j) (4.4)

4.2.2 Writing into Memory

Given a weighting vector wt emitted by a write head at time t, along with

an erase vector et whose M elements all lie in the range (0,1), the memory

25

vectors Mt−1(i) from the previous time-step are modified as follows:

M̃t(i)←Mt−1(i)[1− wt(i)et] (4.5)

where 1 is a row vector of all 1-s, and the multiplication against memory

location acts point-wise. Therefore, the elements of a memory location are

reset to zero only if both the weighting at the location and the erase element

are one; if either the weightings or the erase is zero, the memory is left

unchanged. When multiple write heads are present, the erasures can be

performed in any order, as multiplication is commutative.

M̃t is differentiable with respect to Mt wt and et and the corresponding

derivatives are:

∂M̃t(i, j)

∂Mt(i′, j′)
= (1− wt(i)et(j))I(i = i′)I(j = j′) (4.6)

∂M̃t(i, j)

∂wt(k)
= −Mt−1(i, j)et(j)I(i = k) (4.7)

∂M̃t(i, j)

∂et(k)
= −Mt−1(i, j)wt(i)I(k = j) (4.8)

Each write head also produces a length M add vector at, which is added

to the memory after the erase step has been performed:

Mt(i)← M̃t(i) + wt(i)at (4.9)

Once again, the order in which the adds are performed by multiple heads

is irrelevant. The combined erase and add operations of all the write heads

produces the final content of the memory at time t.

Mt is differentiable with respect to wt, at and et and the corresponding

26

derivatives are:

∂Mt(i, j)

∂M̃t(i′, j′))
= I(i = i′)I(j = j′) (4.10)

∂Mt(i, j)

∂wt(k))
= wt(i)I(j = k) (4.11)

∂Mt(i, j)

∂wt(k))
= at(j)I(i = k) (4.12)

4.2.3 Addressing Mechanism

The addressing mechanism used to update read as well as write weighting

vectors is presented as a flow diagram in Fig. 4.2.3. The weightings arise

by combining two addressing mechanisms: “content-based addressing” and

“location-based addressing”. The content based addressing focuses attention

on locations based on similarity between current values in memory matrix

and the values emitted by the controller. The location based addressing is

used to facilitate both simple iterations across the locations of the memory

and random-access jumps. It includes the interpolation, convolutional shift

and finally, sharpening. The following sub-sections provides a description of

each stage.

Content Addressing

The weightings produced by the content addressing module will focus on

those memory slots Mt(i) which are similar to the length M key vector kt

(with respect to cosine similarity) and hence the content of the read vector (if

formed by this weighting alone) will be similar to the content of the focused

memory slot content. The precision of focus can be attenuated or amplified

27

Figure 4.2: Flow diagram of addressing mechanism.[9] The key vector,
kt and key strength, βt are used to perform content-based addressing of the
memory matrix, Mt. The resulting content-based weighting is interpolated
with the weighting from the previous time step based on the value of the
interpolation gate, gt. The shift weighting, st determines whether and by
how much the weighting is rotated. Finally, depending on γt, the weighting
is sharpened and used for memory access.

with a positive key strength βt.

As an example, suppose memory looks like [A,B,C,D, ..., Z], 26 memory

slots with one unique alphabetic character each, key vector is D and key

strength is very large (note that infinite key strength changes softmax to

max). Then, the weighting produced by content addressing module will

approximately be [0, 0, 0, 1, ..., 0] and corresponding read vector will be D.

wct (i)←
exp (βtK[kt,Mt(i)])∑
j exp (βtK[kt,Mt(j)])

(4.13)

The cosine similarity measure is defined as:

K[u,v]← u.v

‖u‖ ‖v‖
(4.14)

28

The derivative of wc
t with respect to βt, kt and Mt are:

∂wct (i)

∂βt
←

exp (βtci)(
∑

j(ci − cj) exp (βtcj))

(
∑

j exp (βtcj))2
(4.15)

where

ci ← K[kt,Mt(i)] (4.16)

Also,
wct (i)

∂ci
←
∑

j 6=i βt exp (βtcj)

(
∑

j exp (βtcj))2
(4.17)

and
wct (i)

∂cj
← −βt exp (βtci) exp (βtcj)

(
∑

j exp (βtcj))2
(4.18)

where
∂K[u,v]

∂u(i)
← 1

‖u‖ ‖v‖

[
v(i)− u(i)(u.v)

‖u‖2

]
(4.19)

where u=kt and v=Mt(i). Now, one can use chain rule to find the derivative

of wc
t with respect to kt and Mt.

Interpolation

Each head emits a scalar interpolation gate gt in the range (0,1). The value

of gt is used to blend between the weighting wt−1 produced by the head at

the previous time-step and the weighting wc
t produced by the content system

at the current step, yielding the gated weighting wg
t :

wg
t ← gtw

c
t + (1− gt)wt−1 (4.20)

The main aim of having this module is to give the addressing mechanism ca-

pability to completely neglect the weighting produced by content addressing

based module and use the previous final weighting as a reference point. This

29

gives NTM the power to iterate over memory slots (this module just sets the

reference point i.e. the weighting to start from while the next module takes

care of the iteration part). One can easily observe that, if the gate is zero,

the the content weighting is entirely ignored and weighting from previous

time step is used and if the gate is one then the weighting from the previous

iteration is ignored, and the system applies content based addressing. The

derivative of wg
t with respect to gt, wc

t and wt−1 are:

∂wgt (i)

∂gt
← wct (i)− wt−1(i) (4.21)

∂wgt (i)

∂wct (j)
← gtI(i = j) (4.22)

∂wgt (i)

∂wt−1(j)
← (1− gt)I(i = j) (4.23)

Convolutional Shift

The controller emits a shift weighting st that defines a normalised distribution

over allowed integer shifts. If we index N memory locations from 0 to N -1,

the rotation applied to wg
t by st can be expressed as the following circular

convolution.

w̃t(i)←
N−1∑
j=0

wgt (j)st(i− j) (4.24)

As an example, suppose memory looks like [A,B,C,D, ..., Z], 26 memory

slots with one unique alphabetic character each and the weighting vector

produced by interpolation module is [0, 1, 0, 0, 0, ..., 0] (focusing on memory

slot containing B). Now, suppose that shift weighting vector produced only

allows shifts of 1 and the corresponding shift weight value be 1. That means

30

st(1) = 1 and st(i) = 0 ∀ i 6= 1. Then, using equation 4.24 new weighting

vector produced will be [0, 0, 1, 0, ..., 0]. Also, note that if the shift weighting

vector produced, only allows shifts of -1, 0 and 1 and the corresponding

shift weight value be 0.1, 0.8 and 0.1 respectively. That means st(1) = 0.1,

st(−1) = 0.1, st(0)=0.8 and st(i) = 0 ∀ i 6= to {-1,0,1}. Then, the new

weighting vector will be [0.1, 0.8, 0.1, 0, ..., 0] which is slightly blurred over

three points. To combat this we require sharpening. Note that the derivative

of w̃t with respect to st and wg
t are (note that the subtraction is modulo N):

∂w̃t(i)

∂st(k)
←

N−1∑
k=0

wgt (i− k) (4.25)

∂w̃t(i)

∂wgt (j)
←

N−1∑
j=0

st(i− j) (4.26)

Sharpening

Each head emits one further scalar γt whose effect is to sharpen the weights

as follows:

wt(i)←
w̃t(i)

γt∑
j w̃t(j)

γt
(4.27)

The derivative of wt with respect to w̃t and γt are:

∂wt(i)

∂γt
← w̃t(i)

γ
t∑

j w̃t(j)
γ
t

[
log(w̃t(i))−

∑
j log(w̃t(j))w̃t(j)

γ
t∑

k w̃t(k)γt

]
(4.28)

∂wt(i)

∂w̃t(i)
← γtw̃t(i)

γt−1∑
j w̃t(j)

γ
t

[
1− w̃t(i)

γ
t∑

k w̃t(k)γt

]
(4.29)

and when i 6= j

31

∂wt(i)

∂w̃t(j)
← −γtw̃t(i)

γtw̃t(j)
γt−1∑

k w̃t(k)γt
(4.30)

The combined addressing system of weighting interpolation and content

and location-based addressing can operate in three complementary modes:

1. A weighting can be chosen by the content system without any modifi-

cation by the location system.

2. A weighting produced by the content addressing system can be chosen

and then shifted. This allows the focus to jump to a location next to, but

not on, an address accessed by content; in computational terms this allows

a head to find a contiguous block of data, then access a particular element

within that block.

3. A weighting from the previous time step can be rotated without any

input from the content-based addressing system. This allows the weighting

to iterate through a sequence of addresses by advancing the same distance

at each time-step.

4.3 Controller

The choices for the controller include LSTM, feedforward networks and re-

current network, each of which are explained in chapter 4.

4.4 Training Neural Turing Machine

Fig. 4.3 represents a simulation of external input sequence {X1, X2, . . . Xn}

through a Neural Turing Machine. Ct represents hidden layer of neurons

where C0 represents hidden layer of neurons at time t = 0 which can also

be interpreted as the biased hidden layer of neurons which acts as one of

32

the parameters of the NTM. Hidden layer of neurons Ct is used to produce

an erase vector et+1 and an add vector at+1 which are used in updating the

memory. The parameters WeC and beC are used to generate et+1 and the

parameters WaC and baC are used to generate at+1. Here, the values in add

vector are clipped between −1 and 1.

et+1 ← σ(WeCCt + beC) (4.31)

at+1 ← (WaCCt + baC) (4.32)

M0 represents the bias memory matrix which acts as one of the parame-

ters of the NTM. Memory matrix at time t is given by Mt which is updated

to Mt+1 by applying equations 4.5 and 4.9 which use the write weighting

vector ww,t, erase vector et+1 and add vector at+1. rt represents read vector

which is formed by applying equation 4.2 which uses the updated memory

matrix Mt and the read weighting vector wr,t−1. Then, the external input

Xt and the read vector rt are used to update the hidden layer of neurons Ct

using the parameters WCX, bCX, WCr and bCr.

Ct ← relu(WCXXt + bCX + WCrrt + bCr) (4.33)

Using the updated hidden layer of neurons Ct and a set of parameters

{WPC,bPC,WkuC,bkuC,WβuC,bβuC,WguC,bguC,WsuC,bsuC,WγuC,bγuC},

an external output Pt (assuming that the values in vectors of target sequence

lie between 0 and 1), a set of outputs for updating the read weighting vector

Hr,t and a set of outputs for updating the write weighting vector Hw,t are

produced. Here, Hu,t comprises of a key vector ku,t, a key strength scalar

βu,t, a gating scalar gu,t, a shifting vector su,t and a sharpening scalar γu,t

where u = r for read weighting vector and u = w for write weighting vector.

33

Note that the key vector is clipped between −1 and 1. These sets of outputs

along with the memory matrix and read and write weighting vectors at pre-

vious time step are used to update the read and write weighting vectors by

making use of the addressing mechanism defined in section 4.2.3

Pt ← σ(WPCCt + bPC) (4.34)

ku,t ←WkuCCt + bkuC (4.35)

βu,t ← relu(WβuCCt + bβuC) (4.36)

gu,t ← σ(WguCCt + bguC) (4.37)

su,t ← σ(WsuCCt + bsuC) (4.38)

γu,t ← relu(WγuCCt + bγuC) (4.39)

The updated hidden layer of neurons, then, also produces an erase and

an add vector using equations 4.31 and 4.32 which, with the updated write

weighting vector, are used to update the memory matrix. This process goes

on until the input sequence gets exhausted. Once an external output Pt has

been produced for each element Xt in the input sequence, an error or loss

Losst is calculated between the external outputs Pt and the targets Yt. Here,

the loss function is chosen based on the task. Since we are assuming that

the values in vectors of target sequence lie between 0 and 1, therefore, the

binary cross entropy loss will be an appropriate choice.

Losst = binary crossentropy(Pt, Yt) (4.40)

Let P be the matrix of predicted external output vectors [P1, P2, . . . PT]

and Y be the matrix of target external output vectors [Y1, Y2, . . . YT], then

34

one can compute the loss corresponding to the complete output sequence by

computing the binary cross entropy error (refer section 3.2.3) between P and

Y .

overall loss, L = binary crossentropy(P, Y) (4.41)

Now, the derivative of the overall loss L is computed with respect to

each parameter of the model by making use of the chain rule of partial

derivatives (refer section 3.2.4) and the derivative equations in this chapter.

After computing the derivative of L with respect to each parameter, the

parameters of the model are updated using the RMSprop version of gradient

descent as described in section 3.3.

Figure 4.3: Neural Turing Machine learning network.

4.5 Experiments

We developed two versions of NTM, one with a single head which is used

to read from as well as write to the memory and the second with two sepa-

rate heads, one for reading from the memory and other for writing into the

memory. We tested these two versions of NTM on tasks described below.

35

4.5.1 Copy Task

The memory matrix size was set to 128 × 20 i.e. 128 memory slots each of

length 20. For training the first version of NTM, we took random binary

sequences of length less than or equal to 20 and for the second version of

NTM, we took binary sequences of length less than or equal to 5. One such

input output sequence is shown in Fig. 4.4.

Figure 4.4: Input and output sequence in copy task.

Our first version of NTM was able to correctly predict the external out-

put sequence with input sequences of length 116 and our second version of

NTM was able to correctly predict the external output sequence with input

sequences of length 34. Fig. 4.5 and Fig. 4.6 shows the learning curves in

the two cases. Fig. 4.7 and Fig. 4.8 shows the corresponding plots which

includes the visualization of the interaction between the controller and the

memory matrix.

36

Figure 4.5: Learning curve in copy task with our first version of
NTM.

Figure 4.6: Learning curve in copy task with our second version of
NTM.

37

Figure 4.7: Graphical visualization of copy task with first version of
NTM. External Input Sequence (X), Target Sequence (Y), Prediction Se-
quence (Prediction), Thresholded Prediction Sequence (Thresholded Predic-
tion), Error (Abs(Prediction-Y)), Read vectors (Reads), Add vectors (Adds)
and Weightings before and after ending delimiter

38

Figure 4.8: Graphical visualization of copy task with second version
of NTM. External Input Sequence (X), Target Sequence (Y), Prediction Se-
quence (Prediction), Thresholded Prediction Sequence (Thresholded Predic-
tion), Error (Abs(Prediction-Y)), Read vectors (Reads), Add vectors (Adds),
Read Weighting vectors (Read Weights) and Write Weighting vectors (Write
Weights)

39

One can infer from the graphical visualization of the interaction between

the controller and the memory matrix that both versions of NTM have suc-

cessfully learnt the following algorithm:

initialise: move head to location next to start delimiter

while end delimiter not seen do

receive input vector

write input to head location

increment head location by 1

end while

return head to start location

while true do

read output vector from head location

emit output

increment head location by 1

end while

40

Chapter 5

End to End Memory Networks

for QA Task

This chapter explores another RAM based model called end to end memory

networks and its application to question answering task. End to end memory

networks is a novel model that has a recurrent neural network architecture

where the recurrence reads from a possibly large external memory multiple

times before outputting a symbol. The model being differentiable end to end

with respect to the parameters is hence trainable end to end and requires less

supervision than the memory networks discussed in [23]. Section 6.1 describes

a single layered end to end memory network. Then, section 6.2 describes a

multi-layered version. Section 6.3 briefly states the loss computation and

training and finally, section 6.4 shows experimentation and results with end

to end memory networks in question answering task.

41

5.1 Single Layered End to End Memory Net-

works

Suppose {s1, s2, . . . sn} be an input sequence of sentences forming a compre-

hension where each sentence is a sequence of words from a vocabulary V ,

q be a query based on the comprehension which is again a sentence formed

of words from V and y be the target one-word answer to the query q which

belongs to the comprehension itself. A single layer of end to end memory

networks, Fig. 5.1, comprises of three components: input memory represen-

tation, output memory representation and final answer prediction.

Input Memory Representation : Each word in the input sequence of

sentences, query sentence and the target one-word answer is converted to the

bag of words representation i.e. a vector of dimension equal to the number of

words in the vocabulary with value of 1 for the corresponding word and 0 for

all other words. Then the a memory vector mi is computed corresponding

to each sentence si using an embedding A as follows:

mi ←
∑
j

lj.Axij (5.1)

where

xij = BAG OF WORDS(sij) (5.2)

and

lkj ←
(

1− j

J

)
−
(k
d

)(
1− 2j

J

)
(5.3)

where J is the total number of words in the sentence si and d is the dimension

of embedding A. Similarly, the internal representation u of the query q is

computed using embedding B. Then, a weighting vector p over the memory

42

vectors is computed where pi denotes the similarity of the memory vector mi

and the internal representation of query u. Higher the value of pi implies

more relevant the sentence si is in answering query q.

pi ← Softmax(uTmi) (5.4)

Output Memory Representation : The output vectors ci corresponding

to each sentence si are computed using an embedding C in the same manner

as the memory vectors are computed. Then, an intermediate response o

is calculated as the weighted sum of the output vectors weighted by the

weighting vector p.

o←
∑
i

pici (5.5)

Final answer prediction : The output vector o is summed with the internal

representation of query u and the resulting vector is decoded using a decoding

matrix W. The decoded vector is then softmax-ed to produce the final

response â.

â← Softmax(W(o + u)) (5.6)

The error or loss in the final response is computed using the binary

crossentropy loss function (refer section 3.2.3) with â andBAG OF WORDS(y)

as arguments. Note that the parameters of the single layered end to end

memory network are A, B, C and W.

43

Figure 5.1: End to End Memory Networks Architecture.[20] (a) A
single layer version. (b) A three layer version.

5.2 Multi-Layered End to End Memory Net-

works

The single layered end to end memory networks cannot predict correct an-

swers to questions which require transitive implications. For example, con-

sider the following comprehension,

1. Jerry is a mouse.

2. mice are afraid of wolves.

Now, consider the following query, “Jerry is afraid of whom?”. This query

requires transitive implication that “Jerry ⇒ mouse”, “mice ⇒ afraid of

wolves”⇒ “Jerry⇒ afraid of wolf”. Multiple layers (or hops) are introduced

to answer such questions.

Multi-layered end to end memory network is formed by stacking the single

layers. Fig. 5.1 shows a single and a multi-layered (3 layered) end to end

memory network. The parameters of the multi-layered end to end memory

44

network are W, B, Ai and Ci where i goes from 1 to the number of hops or

layers. Thus, with multiple layers, the parameter space of the model blows

up and to overcome this issue, a popular technique called parameter tying

is applied. There are two types of parameter tying that can be used,

1. RNN-like: Here, A1 = A2 = . . .An and C1 = C2 = . . .Cn.

2. Adjacent: Here, Ck+1 = Ak, B = A1 and WT = Cn.

We used adjacent parameter tying in our implementation.

5.3 Training End to End Memory Networks

After computing the output â and given the target y, loss L is computed as

(refer section 3.2.3),

L = binary crossentropy(â, y) (5.7)

The derivative of L with respect to each parameter is, then, computed (re-

fer section 3.2.4) and the parameters are updated using stochastic gradient

descent (refer section 3.3).

5.4 Experiments

To test the performance of end to end memory networks, we trained the

model on the 20 tasks in Babi-Project Dataset [20], and computed the con-

fusion matrices, precision, recall and f1-score [25] [24] for each task and got

consistent results as in [20].

45

5.4.1 Question Answering based on Babi-Project Dataset

Here, we show the results in some of the tasks from Babi-Project Dataset.

Task 1: Single Supporting Fact

1. Sample Input

(a) Comprehension

i. Mary moved to the bathroom.

ii. John went to the hallway.

(b) Query: Where is Mary?

2. Sample Output

(a) Answer: bathroom

(b) Sentences used: i

3. Confusion Matrix

C1 C2 C3 C4 C5 C6

C1 148 0 0 0 0 0

C2 0 169 0 1 0 0

C3 0 0 184 0 0 0

C4 0 0 0 153 0 0

C5 0 0 0 0 155 1

C6 1 0 0 0 0 180

4. Score Matrix

46

Class Precision Recall F1-Score

C1 0.99 1.00 1.00

C2 1.00 0.99 1.00

C3 1.00 1.00 1.00

C4 0.99 1.00 1.00

C5 1.00 0.99 1.00

C6 0.99 0.99 0.99

Task 5: Three-args relation

1. Sample Input

(a) Comprehension

i. Bill travelled to the office.

ii. Bill picked up the football there.

iii. Bill went to the bedroom.

iv. Bill gave the football to Fred.

(b) Query: What did Bill give to Fred?

2. Sample Output

(a) Answer: football

(b) Sentences used: iv

3. Confusion Matrix

47

C1 C2 C3 C4 C5 C6 C7

C1 129 8 12 13 0 0 0

C2 20 159 4 4 0 0 0

C3 5 15 94 14 0 0 0

C4 12 21 12 144 0 0 0

C5 0 0 0 0 135 1 0

C6 0 0 0 0 2 86 4

C7 0 0 0 0 3 0 95

4. Score Matrix

Class Precision Recall F1-Score

C1 0.78 0.80 0.79

C2 0.78 0.85 0.82

C3 0.77 0.73 0.75

C4 0.82 0.76 0.79

C5 0.96 0.99 0.98

C6 0.99 0.93 0.98

C7 0.96 0.97 0.96

Task 10: Indefinite Knowledge

1. Sample Input

(a) Comprehension

i. Fred is either in the school or the park.

ii. Mary went back to the office.

(b) Query: Is Mary in the office?

2. Sample Output

48

(a) Answer: yes

(b) Sentences used: ii

3. Confusion Matrix

C1 C2 C3

C1 107 34 5

C2 24 335 76

C3 4 44 363

4. Score Matrix

Class Precision Recall F1-Score

C1 0.79 0.73 0.76

C2 0.81 0.77 0.79

C3 0.82 0.88 0.85

Task 15: Basic Deduction

1. Sample Input

(a) Comprehension

i. Mice are afraid of wolves.

ii. Gertrude is a mouse.

iii. Cats are afraid of sheep.

iv. Winona is a mouse.

v. Sheep are afraid of wolves.

vi. Wolves are afraid of cats.

vii. Emily is a mouse.

viii. Jessica is a wolf.

49

(b) Query: What is gertrude afraid of?

2. Sample Output

(a) Answer: wolf

(b) Sentences used: ii, i

3. Confusion Matrix

C1 C2 C3 C4

C1 209 0 0 0

C2 0 238 0 0

C3 0 0 204 0

C4 0 0 0 341

4. Score Matrix

Class Precision Recall F1-Score

C1 1.00 1.00 1.00

C2 1.00 1.00 1.00

C3 1.00 1.00 1.00

C4 1.00 1.00 1.00

Task 20: Agents Motivations

1. Sample Input

(a) Comprehension

i. Sumit is tired.

(b) Query: Where will sumit go?

2. Sample Output

50

(a) Answer: bedroom

(b) Sentences used: i

3. Confusion Matrix

C1 C2 C3 C4 C5 C6 C7

C1 96 0 0 0 0 0 0

C2 0 158 0 0 0 0 0

C3 0 0 93 0 0 0 0

C4 0 0 0 154 0 0 0

C5 0 0 0 0 179 0 0

C6 0 0 0 0 0 152 0

C7 0 0 0 0 3 0 160

4. Score Matrix

Class Precision Recall F1-Score

C1 1.00 1.00 1.00

C2 1.00 1.00 1.00

C3 1.00 1.00 1.00

C4 1.00 1.00 1.00

C5 1.00 1.00 1.00

C6 1.00 1.00 1.00

C7 1.00 1.00 1.00

51

Chapter 6

Generic Game Playing Agent

using Deep Reinforcement

Learning with RAM

This chapter provides with the background material and literature review of

reinforcement learning for building game playing agents. Section 6.1 deals

with markov decision process with relevant theorems and their proofs forming

the base of reinforcement learning, section 6.2 describes the policy value and

section 6.3 describes the state-action value function and an algorithm called

Q-learning for approximating the optimal state-action value function. Then,

section 6.4 deals with building a generic game playing agent (a single model

capable of learning to play any game) using the concepts of neural networks

specifically, convolutional neural networks from deep learning and markov

decision process from reinforcement learning. Then, in section 6.5, some

ideas are presented for building an agent that can not only learn to play any

game but can also provide reasoning behind the strategy (the sequence of

actions) being played by the agent. We start with a brief introduction of

52

reinforcement learning.

In reinforcement learning, the learner does not receive a labeled dataset,

in contrast with supervised learning. Instead, he collects information through

a course of actions by interacting with the environment. In response to an

action, the learner or agent receives two types of information: his current

state in the environment and a real-valued reward, which is specific to the

task and its corresponding goal. Fig. 6.1 shows the general scenario of rein-

forcement learning. Unlike supervised learning, there is no fixed distribution

according to which the instances are drawn; the choice of a policy defines the

distribution.

Figure 6.1: Representation of general scenario of reinforcement
learning.

The objective of the agent is to maximize his reward and thus to deter-

mine the best course of actions, or policy, to achieve the objective. However,

the information he receives from the environment is only the im-

mediate reward corresponding to the action just taken. No future

or long-term reward feedback is provided by the environment. The

agent also faces the dilemma between exploring unknown states and actions

to gain more information about the environment and exploiting the informa-

tion already collected to optimize his reward. Two main settings are possible:

1. Environment model is known to agent. Then the problem is reduced

53

to planning.

2. Environment model is unknown to agent. Then, he faces learning

problem. This will be our main concern in this thesis.

Note that environment model comprises of the state transition probability

distribution and the reward probability distribution which are defined in the

next section.

6.1 Markov Decision Process

A Markov Decision Process (MDP) is defined by:

1. Set of states, S.

2. Set of actions, A.

3. Start state, s0 ∈ S.

4. Reward Probability

P (rt+1|st, at) where rt+1 = r(st, at) (6.1)

5. State transition probability

P (st+1|st, at) where st+1 = δ(st, at) (6.2)

We also define π : S → A as the policy function mapping a state S to

an action A. In a discrete time model, actions are taken at a set of decision

epochs {0, . . . , T}. We deal with infinite horizon i.e. T tends to infinity.

Then, the agent’s objective is to find a policy that maximizes his expected

reward.

54

Figure 6.2: Illustration of states and transitions of MDP at different
times.

6.2 Policy Value

We define the policy value Vπ(s) in the case of infinite horizon as the expected

reward of the agent starting at state s and following policy π i.e.

Vπ(s) = E
[T−t∑
τ=0

γτr(st+τ , π(st+τ))|st = s
]

(6.3)

where T tends to infinity.

Theorem 6.2.1. The policy value Vπ(s) obey the following system of linear

equation (Bellman’s equation):

∀s ∈ S, Vπ(s) = E[r(s, π(s))] + γ
∑
s′

Pr
[
s
′|s, π(s)

]
Vπ(s

′
) (6.4)

Proof.

Vπ(s) = E
[T−t∑
τ=0

γτr(st+τ , π(st+τ))|st = s
]

(6.5)

Vπ(s) = E[r(s, π(s, π(s))] + γE
[T−t∑
τ=0

γτr(st+1+τ , π(st+1+τ))|st = s
]

(6.6)

Vπ(s) = E[r(s, π(s, π(s))] + γE[Vπ(δ(s, π(s)))] (6.7)

The second term in equation 6.7 is the second term of equation 6.4.

55

The Bellman’s equation can also be written as:

V = R + γPV (6.8)

where P is the state transition probability matrix, R = E[r(s, π(s))], γ is

the discount for future rewards and V is the unknown policy value matrix

Theorem 6.2.2. For a finite MDP, Bellman’s equation admits a unique

solution given by

V0 = (I− γP)−1R (6.9)

Proof. One just needs to show that (I− γP) is invertible and the remaining

part is trivial. Note that the infinite norm of P is:

‖P‖∞ = max
s

∑
s′

|Pss′| = max
s

∑
s′

Pr
[
s
′ |s, π(s)

]
= 1 (6.10)

This implies that ‖γP‖∞ = γ < 1. The Eigenvalues of P are all less than

1 and (I− γP) is invertible.

The optimal policy value at a given state s is thus given by

Vπ∗(s) = maxπVπ(s) (6.11)

6.3 State-Action Value Function and Q-Learning

We define the optimal state-action value function Q∗ for all (s, a) ∈ S×A as

the expected return for taking action a ∈ A at state s ∈ S and then following

the optimal policy:

Q∗(s, a) = E[r(s, a)] + γ
∑
s′∈S

Pr[s
′|s, a]V ∗(s

′
) (6.12)

56

Figure 6.3: Q-Learning algorithm [19]

One can observe that the optimal policy can be given by

∀s ∈ S, π∗(s) = argmaxa∈AQ
∗(s, a) (6.13)

Thus, the knowledge of the state-vale function Q∗ is sufficient for the agent

to determine the optimal policy, without any direct knowledge of the reward

or transition probabilities.

Q-learning algorithm descirbed in Fig. 6.3 is used for learning (approx-

imating) the optimal state-action value function. A proof of the algorithm

can be found in [19].

6.4 Deep Reinforcement Learning

In real world scenarios, the number of states are very large (infinite) which

prevents us from representing the state-action value function as a matrix.

This is the case with the atari games too. The number of states (configuration

of the screen of the game) are infinite and hence, we represent our state-value

function using a convolution neural network (instead of a matrix), which

takes state-information (screen) as input and outputs scores representing the

57

expected reward corresponding to each action. The optimal action is the one

corresponding to maximum score.

So, our optimal state-action value function will be given by

Q∗(s, a; θ∗) = E[r(s, a); θ∗] + γ
∑
s′∈S

Pr[s
′|s, a; θ∗]V ∗(s

′
) (6.14)

where,

θ∗ represents the learnt parameters of our neural network. Also, the optimal

policy is given by

∀s ∈ S, π∗(s) = argmaxa∈AQ
∗(s, a; θ∗) (6.15)

6.4.1 Model

Our model based on [18] is a convolution neural network which takes last 4

preprocessed frames of the screen as input (84x84x4), applies 32 convolution

filters with kernel size (8,8) and stride (4,4) and rectifier non-linearity to

get first hidden layers of neurons which is further convolved using 64 filters

with kernel size (4,4) and stride (2,2) and rectifier non-linearity to get the

second hidden layer of neurons which is further convolved using 64 filters

with kernel size (3,3) and stride (1,1) and rectifier non-linearity to get third

hidden layer of neurons which is fully connected to a layer of 512 neurons with

rectifier non-linearity which is again fully connected to output layer of size

equal to number of actions in the minimum legal action set. Each output

unit represents expected reward obtained by the agent if it performs the

action corresponding to that output unit. Here, the preprocessing involves

conversion to grayscale and taking the maximum of the value of pixel in

current frame and the last frame to avoid flickering effect in the games where

58

some objects occur in even or odd frames only.

Figure 6.4: Convolution neural network as the mind of the agent.

6.4.2 Training Details

The parameter ε in our model simulates the exploration vs exploitation trade-

off. A value of 1 for ε implies that the agent will make random actions hence

explore the environment and a value of 0 for ε implies that the agent will

chooses actions based on the model only and hence exploits the acquired in-

formation. While training, we decrease ε with some appropriate decay rate.

So, our agent initially starts by making random actions and collects the infor-

mation in the form of following tuple: (St, at, rt, St+1, gt) where St denotes

the last four states including the current state, at denotes the action taken

in current state, rt denotes the reward received, St+1 denotes the last four

frames including the next state that the agent got into and gt is a boolean

denoting whether the game is over or not. Also, the parameters of the con-

59

volution neural network that acts as the brain of the agent is initialized with

random values. After making a move, the agent selects a random batch of

information from the collected information and makes a gradient descent step

on the euclidean loss between targets and predictions with respect to network

parameters θ where the inputs and targets to convolution neural network are

described below:

Let j = 1, . . . ,m represents the indices of the examples in the sampled

batch. Then, input is:

Ij = Sjt (6.16)

and target is (for action ajt only):

yj = rjt I(g
j
t = True) + (rjt + γmaxa′Q(Sjt+1, a

′; θ))I(gjt = False) (6.17)

The discount value, γ is set to 0.99. We took a batch size of 32, initial

ε value of 1, and final ε value of 0.1. While choosing an action, a uniform

random number is generated between 0 and 1. If the generated number

is less than ε then a random action is taken otherwise an action prdicted

by the state-action value function represented by CNN is taken. We used

the rmsprop (refer section 3.3) version of gradient descent for updating the

parameters. A learning rate of 0.00025, momentum decay rate of value 0.95,

and velocity decay rate of value 0.95 were used in rmsprop.

6.4.3 Results

Fig. 6.5 shows the epoch number versus the total reward and mean Q-value

received by the agent in the atari game Breakout during testing. Each test

epoch comprises of a fixed number of frames to make the rewards in different

epoch comparable. The increase in total reward per epoch shows that our

60

agent learnt to play the game. Fig. 6.6 shows the learning curve for the

game Breakout. As expected, the learning curve doesn’t give much insight

on whether the agent has learnt to play in an optimal manner while the mean

Q-value per epoch does. Then, Fig. 6.7 shows a sequence of frames while

the agent has learnt to play the game.

Figure 6.5: Epoch number versus the total reward and mean Q-value
received by the agent in the game Breakout during testing

61

Figure 6.6: Learning curve for the game Breakout

6.5 Deep Reinforcement Learning with RAM

Consider the game Breakout and the sequence of frames observed by our

model in Fig. 6.7. Now, the model/agent based on deep reinforcement

learning moves to the left. But why? A human agent might answer that

since the ball is moving towards left the action taken is to move left. This is

the part that the model doesn’t answer. It has learnt some set of parameters

that once fitted in the convolutional neural network predicts optimal action

to take. But a RAM-based agent is capable of providing the reason that

“since the ball is moving towards left, I should also move towards left to

prevent death”.

62

Figure 6.7: A sequence of frames while the agent has learnt to play
the game

6.6 Model Ideas

Usually, the optimal decision taken by a game playing agent depends on a

part of his state. For example, consider the atari game Breakout and let

the screen of the game represents the state of the agent. Then, the optimal

strategy of the agent for playing Breakout must depend on the part of the

screen of the game displaying the ball and the slider. Thus, a RAM-based

agent for playing Breakout should have attention on these two areas of the

screen. If the graphical visualization of the attention mechanism between

the controller and the memory of the RAM-based agent for playing Breakout

shows that the two areas (ball and slider) of the screen are in focus, then

it can be inferred that the agent is making decisions (actions) based on the

position of the ball and the slider.

63

We tested the same model described in previous section after replacing

the convolutional neural network with a neural turing machine which takes

a sequence of last 4 frames as external input and produces a score corre-

sponding to each legal action that represents the expected future reward as

external output. The resulting model produced results consistent with those

shown in Fig. 6.5. But we missed a very important aspect. NTM has read

and write heads that focus on the memories not on the content of the memo-

ries. We require attention on the content of the memories not on the location

of the memories. So, the most important change that one must introduce in

NTM for building game playing agents that provide reasoning is to,

“Introduce weighting on the content of the memories.”

Some other ideas of reasonable changes can be:

1. Using a technique called Clustering on Subsets of Attributes (COSA)

[6] for the content addressing module so that the memories can also

be focused based on the partial contents. The motivation behind this

change follows from the way human beings are capable of detecting

partially similar objects.

2. Number of allowed shifts in Neural Turing Machine should be equal to

the number of memory slots in the memory so that the focus can shift

to memory slot at arbitrary distance from the memory slot in focus.

64

Bibliography

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. CoRR,

abs/1409.0473, 2014.

[2] Lon Bottou. Stochastic gradient descent tricks.

[3] Denny Britz. Recurrent neural networks tutorial, part 1 introduction

to rnns.

[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using RNN encoder-decoder for statistical machine transla-

tion. CoRR, abs/1406.1078, 2014.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Technical Re-

port UCB/EECS-2010-24, EECS Department, University of California,

Berkeley, Mar 2010.

[6] Jerome H. Friedman and Jacqueline J. Meulman. Clustering objects on

subsets of attributes. Journal of the Royal Statistical Society, 66:815–

849, 2004.

65

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. In International conference on

artificial intelligence and statistics, pages 249–256, 2010.

[8] Alex Graves. Supervised sequence labelling. Springer, 2012.

[9] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.

CoRR, abs/1410.5401, 2014.

[10] Barbara Hammer. On the approximation capability of recurrent neural

networks. Neurocomputing, 31(1-4), 2000.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. CoRR, abs/1502.01852, 2015.

[12] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhu-

ber. Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[14] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-

works are universal approximators. Neural Netw., 2(5):359–366, July

1989.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems, page 2012.

66

[17] Fandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu.

Neural transformation machine: A new architecture for sequence-to-

sequence learning. CoRR, abs/1506.06442, 2015.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,

Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-

dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,

Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-

trol through deep reinforcement learning. Nature, 518(7540):529–533,

02 2015.

[19] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-

tions of Machine Learning. The MIT Press, 2012.

[20] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus.

Weakly supervised memory networks. CoRR, abs/1503.08895, 2015.

[21] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural

Networks for Machine Learning, 2012.

[22] Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao. Part-

of-speech tagging with bidirectional long short-term memory recurrent

neural network. CoRR, abs/1510.06168, 2015.

[23] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks.

CoRR, abs/1410.3916, 2014.

[24] Wikipedia. F1 score — wikipedia, the free encyclopedia, 2016. [Online;

accessed 22-April-2016].

67

[25] Wikipedia. Precision and recall — wikipedia, the free encyclopedia,

2016. [Online; accessed 22-April-2016].

68

